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Abstract. We report on progress in our investigations of cluster cooling. The analysis of measurements is
based on introduction of the microcanonical temperature and a statistical description of the decay of an
ensemble with a broad distribution in temperature. The resulting time dependence of the decay rate is a
power law close to t−1, replaced by nearly exponential decay after a characteristic time for quenching by
radiative cooling. We focus on results obtained for fullerenes, both anions and cations and recently also
neutral C60.

PACS. 36.40.-c Atomic and molecular clusters – 36.40.Cg Electronic and magnetic properties of clusters
– 36.40.Qv Stability and fragmentation of clusters – 36.40.Wa Charged clusters – 39.10.+j Atomic and
molecular beam sources and techniques

1 Introduction

It is an interesting aspect of clusters that they form a
bridge between atomic and molecular systems and macro-
scopic matter. With increasing cluster size there is a tran-
sition not only in the physical properties, as from the
sharp electronic levels of an atom to the energy bands
of a solid, but also in the concepts applied to describe
the state and the dynamics of the systems. We focus here
on the concepts of energy and temperature. For reactions
of a small cluster the total excitation energy is the key
quantity. With increasing size it becomes more and more
important that the energy is distributed over many de-
grees of freedom and the probability for concentration of
the energy on a single degree of freedom is very small.
Thus, the apparent threshold for reactions becomes much
higher than the reaction barrier (‘kinetic shift’). In the
macroscopic limit it is the energy per degree of freedom
which determines the reaction rate, and the state is char-
acterized by a thermodynamic temperature. It therefore
seems natural to define the temperature also for a cluster
of finite size by setting the excitation energy equal to the
average energy of a system in statistical equilibrium with
surroundings at that temperature, and the introduction
of such a ‘canonical temperature’ has been supported by
more detailed theoretical arguments [1].
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However, the dynamics of an isolated system with con-
served energy is fundamentally different from that of a
system in thermal equilibrium with the surroundings. A
closer analysis shows that it is a different concept of tem-
perature that is relevant for an isolated system, the micro-
canonical temperature, defined as for a macroscopic heat
bath in terms of the logarithmic derivative of the level den-
sity [2]. The system can be regarded as a (finite) heat bath
for the degrees of freedom involved in a reaction. This is
the basic idea in Klots’ finite–heat–bath theory [3,4] but
he does not introduce the microcanonical temperature. In-
stead he defines a temperature for a given reaction with
reference to the same reaction in a system in thermal equi-
librium with a macroscopic heat bath (‘isokinetic temper-
ature’). We find a description based on the microcanonical
temperature much simpler. For small systems this temper-
ature is significantly different from the canonical tempera-
ture defined above since the corresponding heat capacities
differ by about kB, Boltzmann’s constant.

As an example of application of the temperature con-
cept we discuss statistical photon emission. Emission from
infrared–active vibrations and its influence on chemical
reactions has been studied extensively, in particular by
Dunbar and his group [5], and more recently also cool-
ing by electronic emission has been identified and de-
scribed [6,7]. Radiative cooling violates the conservation
of energy for individual clusters and can play an impor-
tant role in the analysis of experiments on cluster dynam-
ics [8,9]. The spectrum of radiation and hence the origin
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of the radiation can be studied by direct detection of the
emitted photons [10–13] but it is difficult to get quanti-
tative information on the radiation power. Several other
methods have been applied for this purpose, for exam-
ple measurement of decay after absorption of two pho-
tons with a variable delay of the second photon [14,15].
We have developed a method based on observation of the
decay of an ensemble of clusters with a broad distribu-
tion in excitation energy. The time dependence follows a
power law until a characteristic cooling time when the de-
cay is quenched by radiative cooling [16]. We focus here
on a comprehensive study of fullerenes. Both anions and
cations have been investigated at an ion storage ring and
the cooling appears to be described quite well by a di-
electric model [17–19]. Very recently we have also studied
cooling of neutral C60 molecules with a time–of–flight ap-
paratus [20].

2 Canonical and microcanonical temperature

Although the concepts of canonical and microcanonical
temperature are fundamentally different the distinction is
not always made. Consider the basic situation in thermo-
dynamics, a system in contact with a heat bath charac-
terized by a level density Ω. At excitation energy E0 the
microcanonical temperature T of the heat bath is defined
through the relation

1
kBT

=
d

dE0
ln Ω(E0). (1)

With the statistical definition of entropy, S = kB ln Ω,
this definition corresponds to the thermodynamic relation
dE = TdS when no work is performed. In statistical equi-
librium all states are occupied with equal probability and
we obtain for the distribution in excitation energy E of
the system with level density ρ(E),

P (E) ∝ ρ(E)
Ω(E0 − E)

Ω(E0)
� ρ(E)e−E/kBT , (2)

where we have expanded the logarithm of the ratio of level
densities to first order. In the limit E/E0 → 0 the terms of
higher order vanish and the energy distribution becomes
canonical. Thus T plays the double role of microcanonical
temperature of the heat bath and canonical temperature
for the system. For macroscopic systems the distinction
between the two concepts is unimportant and it is often
mathematically convenient to represent an isolated macro-
scopic system by a canonical distribution.

For a microscopic system the situation is different. The
dynamics is quite different for isolated systems and for sys-
tems in thermal equilibrium with the surroundings, even
if the initial energy distribution is the same (see Fig. 1 of
Ref. [9] for an example). As often discussed by Bohr and
Heisenberg, the relation between the classical concepts of
energy and temperature exhibits some of the features of
complementarity encountered in quantum mechanics. The
concepts refer to mutually exclusive experimental situa-
tions with different relations of the small system to its

macroscopic surroundings. It is even possible to derive
an analogue to Heisenberg’s uncertainty relation [21]. It
would therefore seem ill advised to introduce temperature
into the description of the dynamics of isolated molecules
and clusters.

This objection disappears when we introduce the mi-
crocanonical and not the canonical temperature [2]. To
demonstrate that the microcanonical temperature is the
appropriate concept we consider the statistical decay of a
cluster with excitation energy E. Based either on consid-
erations of detailed balance or on transition state theory
the rate constant may be expressed as (see Ref. [9] and
references therein)

k(E) = ν
ρ(E − Eb)

ρ(E)
, (3)

where Eb is an energy barrier, for example an electron
binding energy, and the frequency factor ν varies slowly
with E compared with the ratio of level densities. In the
derivation, the numerator is at first the level density of the
daughter system in the decay, and we have assumed that
the ratio between the daughter and parent level densities
at energy E − Eb can be included in ν. The analogy of
the ratio in equation (3) to the expression in equation (2)
suggests an expansion of the logarithm. With the choice
of the average of the initial and final state energies as the
point of expansion we obtain to second order

k � νe−Eb/kBTe . (4)

Here the temperature Te differs from the microcanoni-
cal temperature in the initial state, defined as in equa-
tion (1), by a so–called finite–heat–bath correction, Te �
T − Eb/2C, where C is the microcanonical heat capacity,
C = dE/dT . The temperature Te is to this order the aver-
age of the microcanonical temperatures in the initial and
final states.

The picture of the system as a heat bath for the de-
gree(s) of freedom active in the decay is the same as that
elaborated in Klots’ finite-heat–bath theory [3,4], but in
our view many aspects of the description are much eas-
ier to derive and to understand with the microcanonical
temperature than with the ‘isokinetic temperature’. For
example, the temperature Te in equation (4) is relevant
only for the expression of the ratio in equation (3) as a
Boltzmann factor. The evaluation of the frequency factor
involves a sum over kinetic energies of the emitted parti-
cle and it may be useful also in this context to introduce
an effective temperature. From an expansion analogous to
that leading to equation (4) it is found that this temper-
ature is not Te but the final microcanonical temperature
of the system after the emission, Tf � T − Eb/C [9].

The most common definition of a temperature for a
small isolated system is the temperature at which the av-
erage energy in the canonical distribution in equation (2)
equals the excitation energy E of the system and we
may denote this value the ‘canonical temperature’. An
interesting attempt to justify this definition was made by
Dunbar [1]. He considered a model system consisting of a
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number of harmonic oscillators in statistical equilibrium
at a well defined total energy and derived an approxi-
mate formula for the probability for the jth oscillator with
spacing εj to be excited to the nth level. We have exam-
ined the derivation of this formula and have found that
an improved approximation procedure leads to the same
formula but with the microcanonical values of the tem-
perature and heat capacity. With this reinterpretation the
accuracy of the formula is much improved [2].

3 Radiation

A good example of the usefulness of the microcanonical
temperature is the evaluation of the rate of photon emis-
sion. From detailed balance between emission and absorp-
tion in a statistical equilibrium with fixed total energy an
expression is obtained which contains the ratio between
the level densities of the system after and before emis-
sion, as in equation (3). The microcanonical temperature
is then introduced through an expansion of the logarithm
of this ratio, and to a good approximation one obtains for
the radiation power at frequency ω [9,19],

Ir(E, ω)dω � �ω3

π2c2
σ(E − �ω, ω)

× dω

exp(�ω/kB(T − �ω/2C))− 1
· (5)

The cross-section σ is here the net cross-section for
absorption of a photon with frequency ω, i.e., the cross-
section for absorption minus the cross-section for stimu-
lated emission. The arguments for introducing this quan-
tity are twofold: first, this is the cross-section measured
in a transmission experiment and, second and most im-
portant, this is the quantity fulfilling the sum rules for
the oscillator strength, independent of the excitation en-
ergy [19].

The simplest example is emission from infrared–active
vibrations, which usually dominates the statistical pho-
ton emission at low temperatures (T < 1000 K). For a
three dimensional harmonic oscillator with mass M and
charge Q the cross-section is given by (see, for example,
Ref. [19], Chap. 4)

∫
σ(ω)dω =

2π2Q2

Mc
· (6)

For a harmonic oscillator in level n only transitions to
levels n+1 and n−1 contribute and the difference between
the two cross-sections is independent of n.

For electronic transitions the distribution of oscillator
strength is often dominated by a plasma resonance [19,
22–24], and one obtains for the cross-section [9]

σ(ω) � πr2
N

4ωrN

c

3γω

ω2
p

· (7)

Here rN is the cluster radius and ωp is the plasma fre-
quency and γ the damping constant in the dielectric func-
tion, ε(ω) = 1 − ω2

p/ω(ω+iγ).

Fig. 1. Yield of neutrals detected turn by turn after injection
of Ag clusters into ELISA from a sputter source. For t > 3 ms
the yield has been averaged over 10 revolutions to improve
statistics. The curve through the points is proportional to t−1.1.

4 The 1/t decay law

In experiments on decay of clusters it is often difficult to
define or determine the excitation energy accurately and
instead the decay of an ensemble of clusters with a broad
distribution in excitation energy — or temperature — is
observed. As we shall see, we may even benefit from such
a broad distribution because it allows simultaneous obser-
vation of the decay on different time scales and thereby
identification of a characteristic time for radiative cool-
ing [16].

At first we neglect radiation. The initial energy dis-
tribution g(E) for the ensemble is then only changed by
depletion with rate constant k(E) and the decay rate at
time t is given by

I(t) =
∫

dEg(E)k(E) exp(−k(E)t). (8)

The rate constant k(E) varies rapidly with energy and the
weight function k(E) exp(−k(E)t) therefore peaks sharply
at the energy Em where kt = 1. The integral may be
approximated by the area of this peak multiplied by the
value of the distribution function at Em,

I(t) � 1
t
g(Em)

k(Em)
k′(Em)

· (9)

The energy Em and hence also the last two factors in
equation (9) vary slowly with time and the decay rate
is approximately proportional to 1/t. According to equa-
tion (4) and the relation kt = 1 the temperature of the
decaying molecules decreases logarithmically with time,

Te � Eb

kB ln(νt)
· (10)

The 1/t decay law for ensembles with a broad distribu-
tion in excitation energy has been demonstrated by experi-
ments with ions stored in the electrostatic ring ELISA [25].
One result is shown in Figure 1. The silver cluster anions
were produced by a sputter source and after acceleration
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to 22 keV and mass separation in a magnet they were in-
jected into the ring, and the rate of decay by electron emis-
sion was monitored by detection of neutrals. Over three
decades the rate follows a power law t−n with n � 1.1.
As discussed in reference [16], the small deviation of n
from unity can be explained as a contribution from the
last factor in equation (9).

5 Quenching by radiative cooling

Photon emission is always a competing decay channel and
since the lowest photon energies are typically much lower
than the barrier Eb for the decay process under investi-
gation, the dependence on energy for the rate of photon
emission (Eq. (5)) is usually weaker than the exponen-
tial dependence of the decay rate (Eq. (4)). Photon emis-
sion therefore dominates at low excitation energies, cor-
responding to long times in the 1/t decay law, and this
leads to quenching of the decay. For large clusters, the
emission of a single photon leads to a fairly small change
in temperature and the effect of the radiation may be
described as continuous cooling. This can be introduced
into equation (8) if the rate constant is represented by
the Arrhenius expression in equation (4). We assume that
the cooling rate is approximately constant in the range of
interest, Te → Te/(1 + t/τc), and obtain

I(t) =
∫

dEg(E)ν exp
(
−Eb(1 + t/τc)

kBTe

)

× exp
(
−

∫ t

0

dt′ν exp
(
−Eb(1 + t′/τc)

kBTe

))

= e−t/τ

∫
dEg(E)ν exp

(
− Eb

kBTe

)

× exp
(
−ν exp

(
− Eb

kBTe

)
τ(1 − e−t/τ )

)
. (11)

Here τ = τc/G, where the Gspann parameter G for the
decay is the absolute value of the exponent in equation (4).
One then finds that the power law is replaced by

I(t) ∝ 1
τ(et/τ − 1)

· (12)

For times shorter than a quenching time τ the rate still
follows the 1/t law but it approaches exponential decay
at longer times. From a measurement of τ the cooling
rate can be inferred if the value of the Gspann parameter
is known. The time dependence in equation (12) is only
valid within a limited time range, t < τ ; for longer times
the variation of the radiation power and hence also of τ
with temperature must be included [17].

The most detailed studies have been performed for
electron emission from fullerene anions [7,16,17], and an
example is shown in Figure 2. At times t > 1 ms the
decay of hot molecules is quenched by radiative cooling,
and for t > 20 ms the signal is dominated by neutrals
produced in collisions with the rest gas in the ring. Since

Fig. 2. Observation of electron emission from C−
56 ions in the

storage ring ELISA. The ions were produced in a hot plasma
source, and the yield of neutrals was recorded as a function of
the storage time t.

both the electron binding and the factor ν in equation (4)
are known fairly well for electron emission from fullerene
anions, the decay temperature is known as a function of
time from equation (10) and hence the radiation power as
a function of temperature can be derived from the mea-
surement. The result is well reproduced by equation (5)
with a cross-section quite similar to equation (7) [19]. In
fact, within about a factor of two such a description re-
produces the quenching times measured for a sequence of
fullerene anions with an even number of carbon atoms
from 36 to 96 [17].

The dielectric model for fullerenes developed in refer-
ence [19] leads to a prediction of the radiative cooling as
a function of temperature which can be used to estimate
the temperature of decaying molecules from the observed
cooling rate. This ‘thermometer’ is quite sensitive since
the characteristic cooling time τc in equation (11) is pre-
dicted to be proportional to T−5. We have applied this to
C2 emission from fullerene cations stored in ELISA [18].
The ions were produced with high internal excitation in
a plasma source, and inside ELISA they were illuminated
with a high–intensity pulse from a Nd:YAG laser, creat-
ing an ensemble with a high–energy cut off determined
only by depletion due to dissociation. The quenching times
are tens of microseconds and since the revolution time in
ELISA is about 100 µs, only the exponential tail of the
quenched decay is observed.

This is illustrated in Figure 3 showing the measured
dissociation yield as a function of time for C+

56 and C+
60, to-

gether with curves calculated from the predicted radiation
power as a function of temperature and with an optimum
choice of dissociation energy. This energy determines the
decay temperature as a function of time according to equa-
tion (10) with Eb replaced by Ed. The faster quenching of
the signal for C+

60 implies that this molecule has the higher
decay temperature and hence also the higher dissociation
energy, provided that the values of ν are nearly the same.
With this method we have determined the dissociation
energy for cations of a sequence of fullerenes, from C+

50

to C+
70, and for a couple of heavier molecules. We have

applied a frequency factor ν = 2×1019 s−1 for all the dis-
sociation processes, and with this choice the sum of the
dissociation energies for C62, C64, C66, C68 and C70 is in
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Fig. 3. Decay curve for C+
56 (�) and C+

60 (�) after injection
into ELISA from a plasma source and excitation by a pulse
from a Nd:YAG laser. The lines represent simulations with the
calculated radiation power as a function of temperature and
optimum values of the dissociation energy. A constant yield
from dissociation induced by rest gas collisions is also included.

good agreement with an independent determination from
the heats of formation of C60, C70 and C2 [26].

An important assumption in this analysis is that the
radiation power as a function of temperature is given accu-
rately by the theoretical model. As illustrated by examples
in reference [19], deviations from the model are most likely
for the magic fullerenes due to their electronic shell struc-
ture. However, for the cations the closed-shell structure
is broken and the radiation power should not be far from
the model prediction. The analysis of the measurement
for C+

60 illustrated in Figure 3 gives a dissociation energy
Ed = 10.3 eV for the neutral C60 molecule, which is in
good agreement with other recent determinations [27].

6 Decay through a weak channel

Our method for determination of the dissociation energy
for fullerenes is free of some of the problems of previ-
ous measurements which have created considerable un-
certainty in the literature [8,27], but it still relies upon an
assumption of equal magnitude of the frequency factors ν
in equation (4). The only method which is free from such
weakness appears to be the observation of delayed ionisa-
tion of C60 in reference [28]. In this experiment the yields
of ions and electrons were measured as functions of time
after multiphoton excitation with an intense laser pulse.
Although the ionisation energy, Ei = 7.6 eV, is lower than
the dissociation energy Ed, ionisation is the weaker chan-
nel of decay. This implies that the ionisation rate can be
written as in equation (8), with an exponential depletion
determined by the dissociation rate constant k but with
the front factor k replaced by the rate constant ki for ion-
isation. Ignoring the small difference between the finite–
heat–bath corrections for the two channels we find that ki

may be expressed as

ki = νie−Ei/kBTe ∝
(
e−Ed/kBTe

)Ei/Ed ∝ kEi/Ed . (13)

The argument leading from equation (8) to equation (9)
now gives a different power law,

Ii(t) ∝ t−Ei/Ed . (14)

Fig. 4. Electron yield as a function of time after multi-photon
excitation of C60 with a pulse of third–order–harmonic radia-
tion from a Nd:YAG laser. The curve is from a numerical eval-
uation of equation (8) with the modification in equation (13)
and with a constant energy distribution g(E). The rate con-
stants are given by equation (4) with ν = 2 × 1020 s−1 and
Ed = 11 eV for C2 emission and ν = 2.5 × 109 × (Tf [K]) s−1

and Ei = 7.6 eV for ionisation. Radiative cooling is included
with a rate of about 20% of that predicted from the dielectric
model in reference [19].

Fitting their measurements with such a time dependence,
Hansen and Echt obtained a very high value of the dis-
sociation energy for C2 emission from C60, Ed = 11.9 ±
1.9 eV [28].

Recently these measurements have been repeated and
extended by Campbell’s group, and the experimental re-
sults appear to be consistent with the previous measure-
ments [29]. However, it is argued that an observed strong
decrease of the yield for times approaching 100 µs cannot
be accounted for by radiative cooling alone. An important
role of long–lived triplet states is suggested and the strong
decrease of the decay rate is interpreted as decay of these
states.

We have performed similar time-of-flight experiments
in a different geometry [20]. We have detected both ions
and electrons from a beam of C60 molecules from an oven,
excited by a laser beam. The two beams were nearly anti–
parallel and this ensures that there are no geometrical ef-
fects on the detection efficiency at long times, due to the
motion of the molecules. A preliminary result is shown
in Figure 4. As in earlier measurements, the logarithmic
slope is about 0.7, corresponding to Ed � 11 eV in equa-
tion (14), and the data are compared with a curve ob-
tained from a numerical calculation including radiative
cooling. The corresponding radiation power is lower than
the power calculated from the dielectric model in refer-
ence [19] but, as discussed there, a large reduction is ex-
pected due to the large HOMO-LUMO gap for C60.

The frequency factor ν for C2 emission used in this
calculation is an order of magnitude higher than in our
analysis of the experiments on cations. With this higher
value of ν the measurement for C+

60 illustrated in Figure 3
gives a dissociation energy for the neutral molecule that
is consistent with the preliminary value obtained from the
time-of-flight spectrum in Figure 4. A higher value of ν
for C60 also appears to be necessary to explain the yield
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of C+
58 relative to those of C+

56, C+
54, etc. observed in the

time-of–flight experiment. There may be several factors
contributing to this higher value of the frequency, all con-
nected to the extraordinary stability of C60. As noted be-
low equation (3), ν is proportional to the ratio of the level
densities for C58 and C60 at the same excitation energy.
Owing to the large HOMO-LUMO gap for C60, the elec-
tronic contribution to the level density is much smaller
for this molecule. Also, the geometrical structure of C60

is very stable while for most fullerenes there are a num-
ber of isomers with nearly the same energy. Finally, the
vibrational frequencies are slightly higher for C60 than for
C58, and this leads to a lower vibrational level density.

7 Concluding remarks

In this progress report we have emphasized the develop-
ment of an effective theoretical description of cluster de-
cay. The introduction of the microcanonical temperature
and Arrhenius expressions for decay rates are essential ele-
ments in the formalism used to interpret experiments, and
the power–law distributions resulting from decay of en-
sembles with a broad temperature distribution have been
shown to be a very useful reference for determination of
the influence of radiative cooling. In most of our inves-
tigations we have used a small electrostatic storage ring,
which allows detection of the decay of excited clusters over
several orders of magnitude in time, and we have studied
a broad range of ions, including metal clusters, fullerenes,
and recently also biomolecules. We have focussed here on
the comprehensive results obtained on the radiative cool-
ing of fullerenes. The recent results for the decay of neutral
C60 in a time-of-flight apparatus have provided the first
reliable measurement of radiative cooling of this ‘magic’
molecule. Owing to the closed–shell electronic structure
there are no low–energy electronic excitations and the ra-
diation power should be much lower than observed for
the ions, even at the very high temperatures required for
the decay (∼4000 K). This has now been confirmed by
experiment.

This work was supported by the Danish National Research
Foundation through the research centre ACAP (Aarhus Center
for Atomic Physics) and by an EU Research Training Network,
contract HPRN-CT-2000-0002.
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